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Abstract. A model for the computation of ionic disorder and phase diagrams in complex oxides is presented.

The model is based on a successive integration of the degrees of freedom in the material and can be combined with

®rst-principles techniques to make predictions without the need for experimental data. We show applications on

CaO-MgO, Gd2O3-ZrO2, and sodium b00-alumina. For CaO-MgO the solid solubility limits are predicted in good

agreement with experiments. both Gd2O3-ZrO2 and sodium b00-alumina show a coupled order-disorder transition

where two sublattices undergo an ordering transition simultaneously.
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1. Introduction

The calculation of phase diagrams represents one of

the most dif®cult challenges in ab-initio atomistic

modeling. Whereas zero-temperature energies and

structural properties can now be predicted with fair

accuracy by means of ®rst-principle calculations, non-

zero temperature properties such as free energies,

con®gurational disorder and phase transitions are far

more dif®cult to obtain from ®rst-principles.

Molecular Dynamics presents one possibility for

studying materials at non-zero temperature. The

short duration of a typical Molecular Dynamics

simulation (10±1000 ps) prevents the study of any

property that is determined by the behavior of the

material over long times. Finding equilibrium states

and calculating free energies is therefore not within

the reach of this technique. In addition, the

computational expense of Molecular Dynamics with

a ®rst-principles Hamiltonian is very high, so that it is

usually used with a more simple energy model.

In this paper we develop a model for the

equilibrium thermodynamic and structural properties

of a material that can be implemented with any energy

function, including ®rst-principle models. We show its

application to the CaO-MgO system, Gd2O3-doped

ZrO2, and sodium b00-alumina systems. The idea

behind the model is that although excitations on every

time scale contribute to the non-zero temperature

behavior, it is not necessary to know the detailed

motions associated with every degree of freedom of

the system. By separating the fast from the slow

degrees of freedom, a model with only the slow

degrees of freedom can be used to simulate the

material over very long times. For the model to

represent a speci®c material realistically, the

Hamiltonian (the equation of motion) for the slow

degrees of freedom must contain the effect of the

faster degrees of freedom. As will be demonstrated

below, this bridging of the time-scales for the

thermodynamics of oxides can be achieved by

coarse-graining the partition function.

2. Coarse-grained lattice models and the cluster
expansion

At non-zero temperatures, macroscopic properties

such as crystal structure, volume, order parameters,

etc. are determined by the value that minimizes the

free energy. Free energy is much more dif®cult to

compute than internal energy, as the former contains



all the entropic contributions arising from disorder in

the material. In a typical oxide mixture this disorder

can be due to electronic excitations, vibrations, and

substitutional excitations. An example of the latter is

Frenkel disorder. In magnetic systems, disorder of the

magnetic moments may also contribute to the entropy.

Usually, the time scale for the various types of

disorder is very different, with the substitutional one

typically being the slowest. One can therefore picture

a partially disordered oxide material as slowly moving

from one substitutional con®guration into another,

while at each substitutional state quickly going

through all the faster degrees of freedom. Our

objective is to de®ne a Hamiltonian that describes

the substitutional degrees of freedom of the system, as

this is the slowest time-scale. It is only possible to

de®ne a state function for the substitutional con®g-

urations, such as the Hamiltonian, if the fast and sub-

stitutional excitations are uncorrelated. This means

that, in a given substitutional state, the system has no

memory of how it arrived there. Given that the fast

excitations such as vibrations are usually 4 to 5 orders

of magnitude faster than substitutional excitations,

this condition is usually easily ful®lled: in statistical

mechanical terms, the system can be considered

ergodic in its fast degrees of freedom, between slow

excitations. This will make it possible to de®ne an

effective free energy contribution from the fast

excitations in every substitutional state [1].

To obtain an effective Hamiltonian for the

substitutional arrangement in a system, the partition

function of the material can be coarse-grained to the

partition function of a lattice model [1]. Let {s}

indicate a given substitutional con®guration and

{fast{s}} a con®guration of the faster degrees of

freedom (vibrations, electronic excitations, etc.) that

occur in that substitutional arrangement. The partition

function (which de®nes the free energy) can be

written as:

Z �
X

all states

exp
ÿEstate

kT

� �
�
X
s

X
ffastfsgg

exp
ÿE�fsg; ffastfsgg�

kT

� �
�1�

If all the fast degrees of freedom can be summed, this

can be written as:

Z �
X
fsg

exp
ÿF�fsg�

kT

� �
�2�

with

F�fsg� �

ÿ kT ln
X
ffastfsgg

exp
ÿE�fsg; ffastfsgg�

kT

� �24 35 �3�
F({s}) is the ``effective'' Hamiltonian for the

substitutional degrees of freedom. As can be seen

from Eq. (3) its value is given by the free energy

resulting from all fast excitations in a given

substitutional states. The most important entropic

contributions to F({s}) come from vibrations and

electronic excitations ( for metallic systems).

Equation (2) is the partition function of a lattice

model and its corresponding free energy can therefore

be calculated with standard lattice model techniques.

If we use the correct de®nition for F({s}) this free

energy is guaranteed to be the free energy of the real

system. Equations (1)±(3) represent a successive

reduction in the degrees of freedom by coarse-

graining the partition function. In Eq. (2) only

substitutional degrees of freedom remain with the

faster degrees of freedom integrated into F({s}). The

effective Hamiltonian F({s}) is an exponential

average over all the energies of the fast excitations

in the given substitutional state (Eq. (3)). Two

problems remain: one needs an explicit form for

F({s}), and it has to be possible to compute F({s})

for many con®gurations {s}.

For real materials, there is no closed form for

F({s}) and it is expanded in a basis of cluster
functions [2]. If only two species can occupy a given

lattice site i then a binary occupation variable si can

be de®ned for that site. The variable si is � 1 (ÿ 1)

when site i is occupied by species A(B). Although the

formalism can be extended to ternary occupations, we

will exclude this generalization here for the sake of

clarity [2±4]. The cluster functions are de®ned as:

fa �
Y
i2a
si �4�

where a is any cluster of points on the lattice. The

collection of fa can be shown to be orthogonal and to

span all of con®gurational space so that it forms a

suitable basis for functions that depend on the
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substitutional con®guration (such as F({s})). F({s})

can be expanded in this basis:

F�fsg� �
X
a

Vafa�fsg� �5�

The Va are called effective cluster interactions (ECI).

Since F({s}) is temperature dependent the Va will

also be temperature dependent.

The construction of a lattice Hamiltonian for a

material now consists of ®nding the values for the Va
in the cluster expansion (Eq. (5)). The advantage of

the cluster expansion lies in the fact that usually the

ECI converge rapidly with the size of the cluster a and

the separation of points in a. Many systems have been

characterized by 10±15 ECI. Usually the ECI are

determined by truncating the cluster expansion after

some ®nite range and ®tting the Va to the computed

values of F({s}) for a set of simple ordered

con®gurations. In a typical procedure one will start

the ®t with a very small number of ECI and select

additional ECI based on how much they improve the

®t. This procedure is stopped when the ®t does not

improve much anymore. Of course, convergence

always has to be checked by then comparing the

value of F({s}) predicted by the cluster expansion

with values from direct calculation for some

con®gurations that were not used in the ®t.

The cluster expansion can be extended to systems

in which multiple sublattices contain substitutional

disorder [5]. For example in Gd2O3-ZrO2 , the Gd and

Zr cations share a common sublattice while oxygen

ions and charge compensating vacancies share the

anion sublattice. In this case, an appropriate basis can

be constructed from the cluster functions of each

individual sublattice. If fa and yb are respectively the

cluster function describing the binary disorder on the

cation and anion sublattice, the new basis function:

cab � fayb �6�
can be de®ned for the complete system. This basis

offers an unbiased description of the con®guration of

all ions and does not rely on any simplifying

assumptions often used in modeling defects in

oxides (such as models that assume association of

isolated vacanies and dopant cations, etc.). We will

use it to study coupled disorder in Gd2O3-ZrO2 and in

sodium b00-alumina.

F({s}) is itself de®ned from a partition function

over the fast degrees of freedom. This partition

function is made up out of a ground state and a series

of excited states. Because including all the states in

F({s}) can be dif®cult computationally, F({s}) is

often approximated by the ground state energy. The

ground state energy is the lowest energy that can be

achieved for a given substitutional con®guration of

ions ({s}). In almost all cases, this state can be

obtained by starting with all ions at the sites of some

underlying lattice and simply relaxing all coordinates

and lattice parameters until a minimum for the energy

is obtained. The single term approximation for F({s})

amounts to neglecting vibrational and electronic

entropies. Although the former may represent a

large contribution to the free energy, it is still under

debate as to whether it is an important factor in the

free energy difference between phases [6,7], which is

the relevant quantity to study phase diagrams. Studies

on model systems have indicated that neglecting the

vibrations may lead to an overestimation of the

temperature-scale by 10±25% [7].

An overview of the procedure to compute phase

diagrams is given in Fig. 1. Note that a description for

the energetics of the system is only needed to compute

E({s}) or F({s}) for a number of con®gurations.

Below we will demonstrate this procedure for three

oxide systems.

3. CaO-MgO Solubility Limits

The experimentally determined phase diagram [8] of

Fig. 1. Overview of the procedure to compute phase diagrams in

systems with substitutional disorder.
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the CaO-MgO system is shown in Fig. 2. We chose

this system as it is well-characterized experimentally

and relatively simple. It is therefore ideally suited as a

system to benchmark our methods.

CaO and MgO both exist in the rocksalt structure.

Mixing the compounds is therefore expected to lead to

a substitutional arrangement of Ca and Mg ions on the

cation sublattice. Because Ca and Mg have the same

valence it can be safely assumed that the oxygen

sublattice remains fully occupied. The substitutional

degrees of freedom can therefore be modeled with an

fcc lattice model representing the occupation of the

cation sublattice [9].

A linear temperature dependence was chosen for

the ECI. This is valid when the temperature is above

its Debye temperature [10].

Va�T� � Vchem
a � kTVvib

a �7�
The chemical ECI (Va

chem) are the expansion

coef®cients for the ground state energy as a function

of con®guration whereas the Va
vib represent the

contribution from lattice vibrations. Since CaO and

MgO are wide band gap insulators there is no

electronic contribution to F({s}).

To determine the chemical ECI in the cluster

expansion we computed the energy of 21 ordered

arrangements of the cations using a tight-binding

Hamiltonian [11]. The tight binding Hamiltonian was

derived from highly accurate pseudopotential calcula-

tions [12]. All symmetry-allowed degrees of freedom

were fully relaxed. The 19 energy values were used to

®t a cluster expansion with 14 ECI. To test

convergence we also performed ®ts using only 18 of

the 21 structures. The quality of the ®t is judged by

how well the ®tted expansion then predicts the

remaining three structures. In our case, the energy

of all three structures was predicted to be within

4 meV of the correct value (calculated directly from

the tight binding). More details can be found in [11].

The vibrational contribution to the ECI was deter-

mined from the phonon density of states of 3 ordered

arrangements (in addition to pure CaO and MgO) [9].

The phonon spectra were computed using the

Spherical Self-Consistent Atomic Deformation

method (SSCAD) [13]. The solid state part of the

CaO-MgO phase diagram was computed by per-

forming a Monte Carlo simulation on the resulting

lattice Hamiltonian. The result with and without the

effect of vibrations is shown in Fig. 3. As we did not

include the liquid, the solubility lines in CaO and

MgO join to form a miscibility gap. The experimen-

tally determined solubility limits are indicated with

®lled circles. Given that our theory is ab-initio and

contains no adjustable parameters, the result is

remarkably good. Without the vibrations the con-

solute temperature is 15±20% too high. Much of this

is corrected by including the vibrational corrections.

Even with a relatively small error in the temperature

scale, the errors in the solubility limits are still

relatively high since they depend exponentially on the

energetics.

This benchmark study does however indicate that

by combining an accurate energy model with lattice

model statistical mechanics, very useful predictions

Fig. 2. Experimental phase diagram for the CaO-MgO system

[redrawn from [8]].

Fig. 3. Solid state part of the computed CaO-MgO phase

diagram. Solid circles indicate experimentally determined

solubility limits. Solid curves indicate the computed miscibility

gaps with and without the effect of vibrational entropy. The

Horizontal line indicates the experimental eutectic temperature

and has no relation to the top of the miscibility gap.
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for phase diagrams can be made without any prior

need for experimental data on the system. In the next

section, we apply a similar technique to a more

complex oxide mixture.

4. The Gd2O3-ZrO2 Phase Diagram

Zirconia (ZrO2) mixed with oxides with lower-valent

cations is a technologically important material. Its

high oxygen diffusivity at elevated temperature makes

it suitable as an electrolyte in sensor and fuel-cell

applications. Even modest improvements to the

diffusivity of oxygen are expected to lead to

substantial economical bene®ts [14,15]. As in many

oxides, the cations have very slow diffusion rates

making it dif®cult to determine the equilibrium phase

diagram of this system with experimental means.

Although pure ZrO2 can exist in several crystal

structures we will only deal here with the cubic

¯uorite structure which is stabilized at high tempera-

ture or with suf®cient doping with lower valent

cations. Two problems arise when modeling Gd2O3-

ZrO2 mixtures on the ¯uorite lattice. Gd2O3 not only

introduces disorder on the cation sublattice but also on

the oxygen sublattice through the introduction of

charge compensating oxygen vacancies. Because the

system exhibits binary disorder on two sublattices, its

coarse-grained energy model needs to be expanded

with the coupled-cluster basis functions of Eq. (6).

This signi®cantly increases the number of ECI as both

intra-sublattice (cation-cation and anion-vacancy) and

inter-sublattice (cation-vacancy) terms need to be

calculated. In addition, as the ECI now describe

exchange of species with different nominal charge the

electrostatic interaction may increase the range at

which they converge. Special techniques to deal with

this convergence problem have been developed [16]

and will be used in this work.

For this system the energy input was obtained from

a simple empirical potential model in which ions

electrostatically interact as point charges. The

repulsive energy at short distances was parameterized

with a Buckingham potential with parameters taken

from [17] and [18]. With this model, the energies of

165 ordered arrangements of cations and anions were

computed in order to ®t a coupled cluster expansion

with 41 ECI. The 165 ordered structures were derived

by constructing all possible arrangements of the ions

in small cells. Structures with very high energy where

discarded as it can be shown that they do not in¯uence

the ECI [16]. The volume and all internal coordinates

of the structures were relaxed. We did not relax the

cell-shape. The large input needed in this case to

parameterize the cluster expansion, prohibits the use

of more accurate quantum mechanical energy tech-

niques. Because of the relatively simple energy model

used and the lack of cell-shape relaxation, the results

should only be expected to reproduce the real system

in a qualitative manner.

From the formation energy of the 165 structures,

we found that the model predicts two stable

compounds: the pyrochlore structure at composition

Zr2Gd2O7 and the bixbyite structure at composition

Gd2O3. Both structures are observed experimentally.

Internal relaxations were found to be essential to

stabilize these structures. If only the electrostatic

energy between ions on the sites of a rigid ¯uorite

lattice is considered, neither the bixbyite nor the

pyrochlore structure is stable. The latter is more than

3 eV above the lowest energy structure with the same

composition.

The equilibrium phase diagram was computed by

Monte Carlo simulation in a mixed canonical grand-

canonical scheme [19] on a cell with 512 cation and

1024 anion sites. The predicted phase diagram is

shown in Fig. 4. Although the temperature scale is

strongly overestimated, the diagram clari®es several

essential features of the system. The pyrochlore

compound, in which both the anions and the cations

are ordered at low temperature, transforms to a

disordered ¯uorite structure through a ®rst order

transition. Based on some X-ray diffraction measure-

Fig. 4. Solid state part of the computed ZrO2-Gd2O3 phase

diagram. Transition temperatures are overestimated due to the

approximations in the energy model.
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ments on samples quenched from different tempera-

tures it has been speculated [20] that both cation and

anion sublatticies may undergo a separate order-

disorder transition. Our results clearly do not support

this claim and show a single order-disorder transition

from the pyrochlore to the disordered ¯uorite phase. It

is more likely that the experimental observations

re¯ect a state in which the cations were short-range

ordered. In our simulations we found that there is

considerable short-range order in the ¯uorite phase

above the order-disorder transition temperature.

Figure 5 shows diffuse scattering along the [111]

¯uorite direction calculated from the Monte Carlo

simulation. The temperature was just above the

pyrochlore transition temperature. The sharp

features in the scattering around the position where

the superstructure peak for the pyrochlore phase

would be located (k� 0.5) indicate relatively large

domains of pyrochlore-like ordering in the disordered

state.

At high Gd2O3 concentration, there is a large

solubility of ZrO2 in the low-temperature bixbyite. At

lower concentration of Gd2O3 we also predict a region

in which the solid solutions unmix (dashed line).

The phase diagram at very low and high

concentrations of Gd2O3 is not the actual equilibrium

phase diagram of this system. At low temperature and

low concentration of Gd2O3, ZrO2 is either tetragonal

or monoclinic and not cubic as assumed here. At

higher temperatures, the actual system forms phases

that are not described by arrangements on the ¯uorite

lattice.

The output of the calculations provides a much

more detailed description of the system than can be

represented in the phase diagram. Recently, the

con®gurations, obtained from simulations, were used

to explain the dependence of the oxygen-ion

conductivity on the doping concentration in this

material [19].

This example shows that even fairly complex

systems can be treated with the procedure outlined in

section 2. Currently, only the lack of a fast, more

Fig. 5. Computed diffraction intensity along the [111] direction for the disordered ¯uorite phase. The ordered pyrochlore would have a

superstructure peak at [0.5 0.5 0.5].
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accurate energy description prohibits the ®rst-princi-

ples calculation of these systems. Progress on a

relatively fast and accurate energy method for oxides

has recently been reported [11] and work to extend

that approach to this system is currently under way in

our group.

5. Sodium b00-alumina

Sodium b00-alumina is a fast-ion conductor used

as a solid electrolyte for the sodium/sulphur battery.

The most common b00-alumina is magnesium

stabilized sodium b00-alumina with composition

Na1�xMgxAl11ÿxO17 where x� 0.67 [21,22]. In this

section we determine the preferred Mg ordering and

its effect on the Na ordering.

The Al3� and Mg2� ions reside in spinel blocks of

the b00-alumina structure (Fig. 6). These spinel blocks

are separated by relatively open low density

`conduction' planes containing sodium and oxygen

ions. Ionic conductivity is localized in these planes. In

Fig. 6. Unit cell of sodium b00-alumina represented in the compact monoclinic unit cell. The sodium conduction planes are separated by

blocks with the spinel structure.
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the spinel blocks, the Al3� reside in four crystal-

lographically distinct interstitial sites. Computational

[23] and experimental [21,22] evidence indicate that

Mg2� ions substitute in only one of these interstitial

sites. The latter sites form a two-dimensional

honeycomb lattice centered in the spinel blocks (see

Fig. 6). In slowly cooled crystals the Na ions order

below 200�C in
���
3
p

a� ���
3
p

a supercell [22]. At higher

temperature the Na ions are disordered on sites that lie

along a two-dimensional honeycomb lattice formed

by the BR-sites (see Fig. 6).

In quenched crystals of b00-alumina the tempera-

ture-dependence of the ionic conductivity shows the

usual Arrhenius behavior [24]. This behavior is

strikingly different in slowly cooled samples where

the activation energy changes over a narrow

temperature interval centered around 200�C
[22,24±26]. At high temperature (T4 600 K), the

activation energy is 0.10 eV, while at low temperature

(T5 400 K), the activation energy is 0.33 eV [22].

Both experimental evidence and molecular dynamics

simulations seem to suggest that there is a close

connection between the non-Arrhenius behavior and

the formation of the sodium superstructure below

200�C [22,27±29]. It has been suggested that the

increased activation energy at low temperatures

results from the pinning of vacancies in the

conduction plane as a result of the Na ordering

[22,30]. Thus, the absence of a change in the

activation energy in the quenched samples has been

attributed to the suppression of the Na ordering in

these samples as a result of the quench treatment [27].

In fact, neutron diffraction experiments have indi-

cated that the sodium ordering in the quenched

crystals is signi®cantly lower than in the slowly

cooled samples [27]. The high mobility of the Na ions

makes it unlikely that a high temperature disordered

Na con®guration has been frozen in at low

temperatures in the quenched samples. Instead, a

more plausible explanation for the difference in Na

Fig. 7. Average energy in the Monte Carlo simulation as function of temperature in a heating (solid line) and cooling (broken line)

simulation.
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ordering between quenched and slowly cooled

crystals, offered by Davies et al. [24] and Alden et

al. [27], is that different thermal treatments results in

variations in the Mg and Al ordering in the close

packed spinel blocks, which in turn affects the degree

of Na ordering. Lane-Rohrer [31] and Hafskjold

[28] used Molecular Dynamics simulations on

b00-alumina to investigate the in¯uence of the Mg2�

con®guration in the spinel blocks on sodium

conductivity and found a substantial effect.

The Mg2� con®gurations in these simulations had to

be picked arbitrarily as the kinetics of ordering in the

spinel blocks is too slow to study with Molecular

Dynamics simulation. Using the coupled sublattice

technique we can actually predict the equilibrium

ordering in both the spinel blocks and the conduction

Fig. 8. Stable equilibrium ordering in the sodium conduction plane (top plane) and Mg-Al plane (bottom plane). Lattice vectors correspond

to those of the primitive unit cell of b"- alumina (see Fig. 6).

* Na ions
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planes. We can also investigate the effect of the shift in

disorder temperature for the sodium ordering caused

by various degrees of quenched Mg2�-Al3� disorder.

The cluster expansion for this material was

parameterized by computing the energy of 129

different con®gurations of Na� in the conduction

planes and Mg2� and Al3� in the spinel blocks with an

empirical pair potential model. The parameters of the

model were the same as those used in a previous

Molecular Dynamics simulation [28]. The behavior of

the system at non-zero temperature was studied by

Monte Carlo simulation on a cell containing 864

primitive unit cells and at ®xed composition. Figure 7

shows the energy of the system as a function of

temperature for heating (solid line) and cooling

(dashed line) simulations. The discontinuity in the

energy around 500 K indicates an order-disorder

transition in the system. The hysteresis re¯ects the

®rst-order character of the transition. The stable Mg

ordering obtained below 500 K is shown in Fig. 8

(lower plane). This is the ®rst time that the

equilibrium Mg con®guration has been reported.

The Na ordering observed in the simulation is

shown in the top plane of Fig. 8 and is the same as

the one observed by Boilot et al. [22]. Remarkably,

the stable ordering in the Mg-Al plane and in the Na-

conduction plane have the same unit cell size and

shape.

Similarly to the pyrochlore-to-¯uorite transition in

Zr2Gd2O7, the strong coupling between the two

sublattices in sodium b00alumina results in a single

order-disorder transition at which both the Na and the

Mg ions disorder simultaneously.

In reality, it is unlikely that the Mg-Al ordering will

fully equilibrate due to the slow diffusion in the spinel

blocks. It is therefore of interest to simulate the effect

of quenched-in disorder on the Mg sublattice: This

was done by creating a high temperature Mg

Fig. 9. Order parameter for the sodium ions as a function of temperature for a material with quenched-in Mg disorder. Below 350 K the

system settles into patches of ordered and disordered sodium regions resulting in an order parameter between 0 and 1 in the honeycomb

sublattice.
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con®guration (obtained by annealing the system at

1725 K) and freezing it in the subsequent cooling runs.

Hence, after the high-temperature anneal, only the

sodium con®guration was sampled in the Monte Carlo

simulations. Remarkably, the Na ions still order into

the
���
3
p

a� ���
3
p

a superstructure, however, the ordering

is imperfect and occurs at a lower temperature. Figure

9 shows the order parameters in the Na plane. The

order parameter is de®ned so that it has the value 1 for

a perfectly ordered state and zero for a completely

random state. At 500 K, the equilibrium transition

temperature, the Na ions remain fully disordered.

Below 300 K the Na ions clearly order. Although the

order parameters abruptly changes at 300 K, no

discontinuity was found for the average energy near

300 K. This is to be expected as the ¯uctuating ®eld

arising from the disordered Mg ions smears the order-

disorder transition in the Na-conduction plane.

The results not only clarify the equilibrium Mg

con®guration in the system but also indicates how

different thermal treatments may in¯uence the Na

conductivity. In equilibrium, Na and Mg ions order

simultaneously below � 500 K. When rapid cooling

prevents Mg ordering, the Na ordering is depressed to

lower temperatures. This effect is expected to increase

the Na conductivity since the activation energy for Na

conduction is lower in the disordered state than in the

ordered state. From our results one can speculate that

long-term aging may reduce the Na conductivity by

allowing the Mg ions to order, thereby increasing the

level of Na ordering. Given the empirical potential

model used as input for this model, the quantitative

agreement between the calculated temperatures and

experimental data may in this case be somewhat

fortuitous.

6. Conclusion

The information contained in equilibrium phase

diagrams is essential to gain an understanding in the

relation between structure, thermal processing and

composition for a material. Phenomena on time scales

spanning 10 orders of magnitude contribute to the

equilibrium free energy of a system preventing the use

of direct simulation techniques such as Molecular

Dynamics. One therefore has to rely on procedures to

systematically integrate over the faster degrees of

freedom to obtain a Hamiltonian for the slowest

degrees of freedom. In most cases, the slowest time-

scale is set by the substitutional disorder so that the

®nal Hamiltonian will have the form of a lattice model

Hamiltonian. The cluster expansion technique pro-

vides an excellent way to obtain an explicit expression

for this Hamiltonian.

The second problem with phase diagram prediction

is the required accuracy. The model for the energy of

the system needs to be accurate on the scale of kT. At

1000�C, kT is � 100 meV. Only quantum mechanical

models can be expected to give mixing energies to

such accuracy. It is therefore not unexpected that

simpler energy models woefully overestimate the

temperature scales. In all cases we attempted so far,

empirical potential models, commonly used in oxides,

did reproduce the qualitative features of the phase

diagram.

Clearly, most of the building blocks for the ®rst-

principles calculations of phase diagrams are in place.

If the results in the CaO-MgO system are indicative of

the accuracy that can be obtained with our approach,

we can expect to predict phase diagrams that are

topologically correct and have transition temperatures

accurate within 10 to 20%. Currently, the application

of ®rst-principles calculations to more complex

systems is limited by the large amount of calculations

required to parameterize the cluster expansion.

Given the wealth of information contained in the

output of atomic-level calculations such as the ones

presented here, it seems inevitable that they will lead

to a better characterization of oxide systems and

contribute to a better understanding of the behavior of

these materials.
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